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Abstract. The paper presents an analysis of the dynamic behavior of oscillatory flows in elements of capillary 
systems based on previously conducted studies. Considered configurations include two capillaries of different diameters 
connected in series, as well as a pipe with two branching capillaries (a branching system element). Such elements are 
typical for hydraulic and capillary structures found in both technical and biological systems. The purpose of this research 
was to extend the previously obtained results to more complex cases involving sharp changes in the cross-section of 
capillaries and their branching. In this case, composite capillaries were understood as systems of connected capillary 
pipes with different lengths and diameters. 

The study begins by applying the theory of laminar flow and established approaches from the literature to determine 
flow rates through a capillary of constant diameter under oscillatory inlet conditions. Next, the phase shift between the 
oscillations of flow rate and pressure within the capillary is calculated as a function of the capillary radius. It was found 
that the phase shift decreases with decreasing capillary radius, but increases with increasing oscillation frequency. Using 
mass conservation laws, the phase shifts of flow and pressure oscillations in different sections of a composite linear 
capillary are then derived. It is shown that the phase shift of flow rate relative to pressure oscillation depends on the 
diameters of the two sections. The phase shift of pressure also varies relative to the first capillary, but the sum of the 
phase shifts of pressure and flow rate in each section remains constant. Further analysis of a branching system element 
leads to a general and simple rule: the sum of phase shifts in each branch of a capillary junction remains constant. 

Thus, the previously established patterns for capillaries with weakly varying diameters are also valid for more 
complex composite capillary systems — those with sharp changes in diameter and branching geometries. This result 
may be useful for evaluating the distribution of total flow within complex branching capillary networks. 
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1. Introduction 
The oscillatory nature of fluid motion in porous and capillary systems 

accompanies many natural and technological processes. In the mining industry, it is 
directly related to the state of rock masses, as well as to oil and natural gas extraction 
technologies [1], technologies for the utilization of secondary resources, and the 
preparation of mineral raw materials for further processing. Oscillatory motion also 
plays a significant role in biological systems, particularly in capillary processes in 
plants and in the circulatory systems of animals and humans [2, 3]. In many cases, the 
study of flows in porous media requires investigation of mass transfer processes at 
the pore scale, e.g., [4]. In most situations, to describe the process in greater detail, 
the problem is reduced to the study of capillary flows in individual tubes—i.e., a 
topologically complex porous system is simplified to a certain network of capillaries 
[5]. This simplified model makes it possible to address rather complex physical 
problems and to provide qualitative recommendations for understanding processes in 
real-world scenarios. One of the main directions associated with the dynamic 
behavior of such systems and with heat and mass transfer processes involves the 
study of unsteady, and in particular, pulsating fluid flows. 

The range of applications for such problems is currently quite broad (described, 
for example, in reviews [6–8]). The first of these publications [6] highlights the 
virtually limitless prospects in the field of microfluidics related to generating pulsatile 
oscillations in microcapillaries, mixing solutions, targeted drug delivery within 
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capillary systems, and more. In the other two publications [7, 8], the authors, 
analyzing the current state of understanding of processes in the cardiovascular 
system, emphasize the need for extensive use of mathematical models in this area. 
Regarding unsteady and pulsatile flows specifically, classical formulations of these 
problems are presented in [9, 10]. 

Recently, a large number of studies have been conducted, for example, [11–15], 
mainly focused on modeling the dynamics of blood flow in the circulatory system. In 
[11, 12], the problem of oscillatory flows in capillaries is examined based on classical 
solutions. The first study, neglecting inertial terms, obtains solutions for flows with 
oscillating capillary walls. The second study provides an analytical solution for a 
planar case involving a mixture of fluids, one Newtonian and the other Maxwellian. 

The next group of studies [13–15] considers more complex models of blood flow 
in capillaries considering the surrounding tissues, where a filtration flow model is 
assumed. In [13], the fluid in the capillary is treated as non-Newtonian due to the 
influence of hematocrit, while in the latter studies, pressure pulsations are described 
as piecewise linear segments. All these publications highlight the significant 
influence of pressure pulsations 

An interesting practical approach related to pulsatile blood flow is presented in 
[16]. Using wavelet coherence analysis, a relationship between oscillations in the 
venous and arterial parts of the capillary and their phase difference is established, 
which is directly relevant to the present work. 

This research, based on the aforementioned approaches, investigates oscillatory 
fluid motion in composite capillary systems. The current study is an advancement of 
the work [17], which investigated certain features of oscillatory motion in a capillary 
with a slightly varying radius. 

The aim of this research is to extend previously obtained results to more complex 
cases involving sharp changes in the capillary cross-section and branching. 
Composite systems are determined here as networks of interconnected capillary tubes 
with varying lengths and diameters. 

 
2. Methods 

Below, the main equations governing unsteady motion in a capillary tube of 
constant diameter are presented: 
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where t is time; z is the longitudinal coordinate along the capillary axis; r is the 
radius; u – longitudinal velocity; w – the transverse velocity, which in this study 
equals zero; ρ – density; p – pressure; and ν – kinematic viscosity coefficient. For 



ISSN 3083-6271 (Print), ISSN 3083-628X (Online) Geo-Technical Mechanics. 2025. № 173 52 

pulsatile flow, the problem has an analytical solution presented in [9]. It is expressed 
as a zeroth-order Bessel function with a complex argument. In our case, to obtain the 
required parameters, it is convenient to use a numerical solution directly. According 

to [9], the pressure gradient and velocity can be represented as ( )
ρdz
dPπft=

zρ
p 2sin
∂
∂ , 

( ) ( ) cs Uπft+Uπft=u 2cos2sin , where f is the oscillation frequency. Then, for the 
functions Us, Uc, the following equations are 
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with the boundary conditions: 
 
for n=0 

 0=
dn

dU=
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dU cs ,  (5) 

 
for n=1 
 Us = Uc = 0. (6) 
 
In these equations νπfR=χ с /2 2 , P are the amplitudes of pressure oscillations, Rc is 
the capillary radius and n=r/Rc. 

The procedure of the numerical solution is as follows. The solution is represented 

in the form: s
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functions φs and φc satisfy the homogeneous equations (3) and (4). We expand these 
functions into series as ...1 6
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20 +nAc+nAc+nAc+Ac=cϕ  After substituting these expressions into 
equations (3) and (4), the obtained coefficients are expressed in terms of 0Ac . Then, 
starting the integration with a small initial step from zero point, we adjust the 
coefficient 0Ac  so that at n = 1, φs  = 0. After that, taking  B = - 1/φc (1), the solutions 
for sV  and cV  is obtained, as well as for the flow rate ( ) ( )πftQ+πftQ=Q cs 2cos2sin , 
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Figure 1 shows the curves of dimensionless flow rates as a function of frequency 
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for different capillary radii from 0.1 mm to 0.5 mm. Considering that equations (3) 
and (4) contain only one parameter, χ, all the necessary dependencies can be 
constructed based on its value. The presence of the qс  and  qs values indicates that the 
fluid flow oscillates with a phase shift δ (tgδ = Qс/Qs = qс/qs) relative to the pressure 
gradient oscillation. The magnitude of this phase shift, as it is mentioned above, 
depends on the parameter χ (Figure 2). It follows from this figure that as the 
parameter χ decreases, the phase shift tends to zero. This means that either a decrease 
in frequency or a decrease in capillary radius leads to a reduction in the phase shift. 
On the other hand, even for very narrow capillaries, a significant phase shift can be 
achieved by increasing the oscillation frequency. 

 

 
A) 

 

 
В) 
 

1 – Rc  = 0.1; 2 – Rc  = 0.2; 3 – Rc  = 0.3; 4 – Rc  = 0.4; 5 – Rc  = 0.5 mm 
 

Figure 1 – Dimensionless flow rates qc (А) and qs (В) as a function of oscillation frequency for 
different capillary radii 

 
Now, using the obtained solutions, it is possible to construct the pulsation 

dynamics for composite and branched capillaries. Let us consider it using two 
elementary types of composite capillaries as examples. 
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Figure 2 – Variation of tgδ as a function of parameter χ 
 
3. Results and discussion 

Composite linear capillaries. By composite linear capillaries, we mean capillaries 
consisting of sequentially connected long segments with different, but constant within 
each segment, diameters. We assume that the pressure drops arising at the transitions 
between segments are much smaller than the resistance of an individual capillary 
segment. In this case, the total resistance can be considered as the sum of the 
resistances of all segments. The pressure gradient for the j-th segment of the 
composite capillary can be written in the general form for harmonic functions as 
follows: 
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where jα  defines the phase of the harmonic oscillation. For a single capillary, it 
depends only on the choice of the initial point on the time axis. In the expression (7), 
it was assumed that the pressure gradient in the j-th segment is determined solely by 
the geometrical characteristics of that particular channel. It was also taken into 
account that the transition from one capillary to another is associated with a sharp 
change in radius, which may lead to a change in the phase angle. Therefore, in 
composite capillaries, the phases of adjacent segments must be related to each other. 
From the form of equations (3) and (4), it follows that the oscillating fluid flow rate Q 
differs in shape from the pressure gradient due to a phase shift. Thus, the flow rate in 
the j-th segment of the capillary can be written as: 
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where ( ) 2
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=G  is uniquely related to jP , and jδ  defines the phase 

difference between the flow oscillation and the pressure gradient oscillation. 
Considering that if the oscillation frequency and the radii of the channels are known, 
then the phase deviations jδ  in each segment are also known. 

Let us consider a specific case of a composite capillary consisting of two 
segments with lengths l1 and l2. In this case, the total pressure drop at the ends of the 
capillary will be equal to: 
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At the interface between the segments, the condition of flow rate continuity must be 
satisfied, since the flow rate is a continuous function and does not depend on the 
segment number. 

 
( )[ ] ( )[ ]222111 2cos2cos δ+απfG=δ+απfG ,     (10) 

 
( )[ ] ( )[ ]222111 2sin2sin δ+απfG=δ+απfG  .     (11) 

 
These conditions reveal an interesting aspect. Suppose the fluid velocity in the 

first capillary is described by a sine law; then, in the second capillary, the flow must 
also oscillate according to the same law. From equation (11), it follows that this is 
possible if ( )[ ] 02sin 11 =δ+απf  and ( )[ ] 02sin 22 =δ+απf , i.e. 01122 =δ+α=δ+α . 
This relation defines the oscillation phases of the pressures in the first and second 
segments (one of the phases can be chosen arbitrarily). By substituting these values 
into equation (9), the variation of the total pressure at the ends of such a tube can be 
determined. 

Alternatively, the problem may be reformulated by specifying the total pressure 
drop at the tube ends, for instance, according to the same sine function, i.e. 

 
( ) ( ) ΔP=πfαlP+πfαlP 222111 2сos2сos ,     (12) 

 
under these conditions 

 
( ) ( ) 02sin2sin 222111 =πfαlP+πfαlP ,      (13) 

 
In this case, α1 = 0 and α2 = 0 cannot be assumed, as this would lead to the 

following simplifications in formulas (10) and (11) ( ) ( )2211 2cos2cos πfδG=πfδG , 
( ) ( )2211 2sin2sin πfδG=πfδG . 
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From the last two expressions, it follows that condition ( ) ( )21 2tg2tg πfδ=πfδ  is 
satisfied only when the radii of the first and second channels are equal, which 
contradicts the assumptions of the problem. 

From condition (13), it follows that despite the sinusoidal nature of the total 
pressure drop oscillation, additional pressure differences arise within each tube. 
These vary according to a cosine law and have opposite signs, so that their sum 
equals zero. In this case, dividing equation (11) by equation (10), the following 
expression is obtained ( )[ ] ( )[ ]2211 2tg2tg α+δπf=α+δπf  or  

 
1122 δ+α=δ+α ,        (14) 
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using (13) and considering (14), the following result is obtained: 
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−
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From this, it indeed follows that α1 and, accordingly, α2 become equal to zero when 
δ1 = δ2. Thus, condition (14) establishes the relationship between the phases of 
pressure oscillations in two adjacent segments. The study [16] demonstrated that 
blood flow oscillations within the cardiac, respiratory, and myogenic frequency 
ranges can exhibit high and reliable phase coherence across different parts of the 
capillary. In the specific investigated case, blood flow velocities were found to be in 
phase, i.e., condition (14) is satisfied. The authors of the mentioned article suggest 
that disruptions in phase coherence and stability of velocity relationships may 
indicate certain vascular changes. Thus, this simple condition may be necessary for 
analyzing the state of the cardiovascular system. 

Branched capillaries. Samples of branched channels are widely represented in 
technical and biological systems [18–20]. For elements of a branched capillary, 
assuming equal pressure drops at the branching points, the following relationships 
apply: 
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( ) ( )333222 2сos2сos πfαlP=πfαlP , 
(18) 

( ) ( )333222 2sin2sin πfαlP=πfαlP . 
 

Indices 2 and 3 denote the two branches of the capillary. From relations (18), it 
follows that 

32 α=α , 
(19) 

3322 lP=lP , 
 

That is, the pressure in the branches oscillates in the same phase. From equation (19), 
it follows that 
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In these expressions, index 1 denotes the segment before the branching point. By 

squaring both the left- and right-hand sides of equations (21) and (22), and then 
summing them accordingly, the following is obtained: 
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It follows that the condition G1 = G2 + G3 is satisfied only when δ1 = δ2. Taking 

into account equation (20), expression (23) yields: 
 

( )[ ] 12

2
1

2
1

2
2

2
2

2
1

2
3

2
3

24

2

3

3

2
32

2
1

2
2

2
2

2
1

2
3

2
3

4

2

3

3

2 2  сos21 G=G

q+q

q+q

R

R

l
l+δδπf

q+q

q+q

R

R

l
l+

cs

cs

с

c

cs

cs

с

c






























































−




























,  (24) 

 



ISSN 3083-6271 (Print), ISSN 3083-628X (Online) Geo-Technical Mechanics. 2025. № 173 58 

By eliminating G1 from conditions (21) and (22), it is obtained that 
( ) ( ) 0sinsin 3211322112 =δαδ+αG+δαδ+αG −−⋅−−⋅  or 
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From (25), taking into account (20), the phase of the pressure oscillation in the 

branched part relative to the oscillation in the first segment of the composite capillary 
can be obtained. If the diameters of tubes in segments 2 and 3 are equal, then 23 δ=δ  
and ( )2112 tgtg δδ+α=α −  or 1122 δ+α=δ+α , for any ratio of 23 / GG . This result 
coincides with that for the linear composite capillary (equation (14)). Thus, 
considering condition (23), it can be stated that these two channels are equivalent to a 
single one with a total flow rate G1. In the general case, if it is initially assumed that 

3322 δ+α=δ+α  and the conditions (21) and (22) are rearranged, the equality 
G1 = G2 + G3 can be obtained, which holds for different diameters of the channels 2α  
and 3α . Therefore, at the channel branching, oscillations in the different branches 
exhibit some phase shift, while the sum jj δ+α  (j = 1, 2, 3) remains constant for all 
elements. 

 
4. Conclusion 

The analysis of the study results suggests that the total phase shift, in cases where 
there are abrupt changes in the cross-sectional areas of the capillaries and even when 
the topological structure of the channel changes sharply, remains constant for each 
segment of the channel. This conclusion is consistent with the authors’ earlier 
findings for channels with slightly varying radii [17]. 

The obtained results may have practical applications in the study of branched 
capillary systems and hydraulic distribution lines. 
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КОЛИВАЛЬНИЙ РУХ РІДИНИ В СКЛАДЕНИХ КАПІЛЯРАХ 
Єлісєєв В., Луценко В., Рузова Т., Харашек М. 
 

Анотація. У цій роботі на основі виконаних раніше досліджень розглянуто динамічні особливості 
коливальних рухів в елементах капілярних систем. Такими елементами, наприклад, є послідовно пов'язані два 
капіляри з різними діаметрами, або трубочка з двома капілярами, що відходять з неї (елемент розгалуженої 
системи). Подібні елементи поширені у будь-яких гідравлічних та капілярних утвореннях, що відносяться як до 
технічних, так і до біологічних систем. На початку роботи на основі теорії ламінарного руху та відомих з 
літератури підходів показано чисельні значення витрат через капіляр постійного діаметра при накладанні 
коливань на вході. Потім визначаються і наводяться значення фазового зміщення коливань витрат щодо 
коливань тиску в капілярі в залежності від його радіуса. Далі на основі законів про збереження мас 
встановлюються залежності фазових зсувів коливань витрат і тисків в різних частинах складеного лінійного 
капіляра. Було встановлено, що, в залежності від діаметрів двох частин складеного капіляра змінюються фазові 
зміщення витрат щодо коливання тиску. Змінюються також фазове зміщення тисків щодо першого капіляра, але 
при цьому сума зміщень коливань тиску і витрати в кожному капілярі залишається постійною. Подальший аналіз, 
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проведений для елемента розгалуженої системи, призводить до загальної простої умови, що сума фазових 
зсувів для кожної частини розгалуженого елемента капілярної системи залишається величиною постійною. 

Таким чином, отримані раніше закономірності для капілярів зі слабо змінним діаметром, залишаються 
справедливими для більш складних складових капілярних систем, під якими в даному випадку розуміються 
капіляри з різкими змінами діаметра і капіляри, що розгалужуються. Цей результат, можливо, буде корисний для 
оцінок розподілу загальної витрати в елементах складних капілярних систем, що гілкуються. 

Ключові слова: капіляр, рідина, витрата, масообмін, коливання. 
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